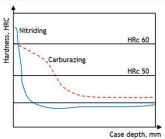


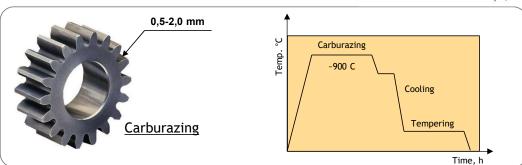
Eachen, April 08th, 2025

Final Workshop

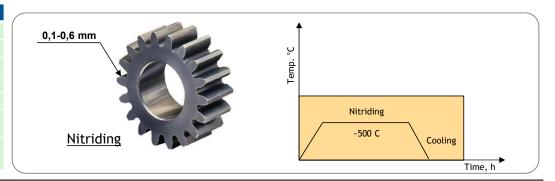
Lateana - CRF


General Overwiev

- Heat Treatment: Carburazing VS Nitriding
- Machinability assessment
- Process Comparison
- Overview of costs assessment
- Possibilities of application to BEV gearboxes



Machinability assessment


Heat Treatment: Carburazing VS Nitriding

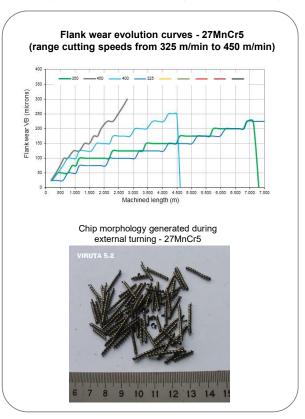
Parameter	Carburizing		
Maximum temperature reached	~ 850-950°C		
Processing time	5-20 hours (depending on depth)		
Achieved hardness (HV)	~550-700 HV (martensite and carbides)		
Geometrical deformation	High (often requires post-treatment grinding)		
Furnace Investment Cost	€€ (Medium-High)		
Energy cost treatment	High (due to high temperatures and quenching)		
Heat treatment	Uses a Carbonaceous environment. Carbon diffuses onto the surface.		

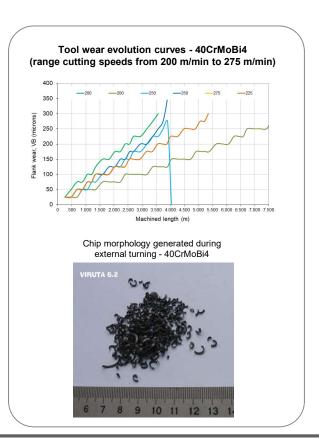
Parameter	Nitriding		
Maximum temperature reached	~500-600°C		
Processing time	20-100 hours (depending on depth)		
Achieved hardness (HV)	~900-1100 HV (nitrides layer)		
Geometrical deformation	Minimal (can be applied to finished parts)		
Furnace Investment Cost	€Low		
Energy cost treatment	Lower (due to lower temperatures and absence of quenching)		
Heat treatment	Uses nitrogen environment. Nitrogen is diffuses onto the surface.		

Machinability assessment

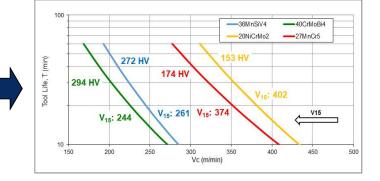
- Rough and Finishing Machining
 - For machinability evaluation (four steels considered)
 - Pre HT: Sintered carbide inserts (low-medium hardness)
 - Post HT: CBN inserts (high hardness)*

- Test: external turning test (ISO 3685:1993)
 - V15 index
 - Taylor curves
 - Wear curves


Steel Grade	Billet Dimension	As supplied	Heat Treatment	Treatment conditions
27MnCr5	Ø 60 mm L 500 mm	Isothermal annealing	LPC and High Pressure Gas Quenching.	Vacuum Heating: 950°C Carburizing: 950°C Final diffusion Quenching
42CrMoBi4	Ø 60 mm L 500 mm	Quenched and Tempered	Nitriding	Nitriding 450 C Cooling controlled

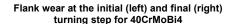

*fine work is not necessary for Nitride process

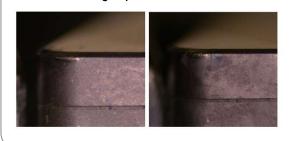
Machinability assessment

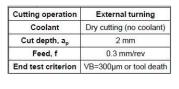

Rough and Finishing Machining

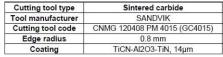
Machinability Taylor curves for the four steels

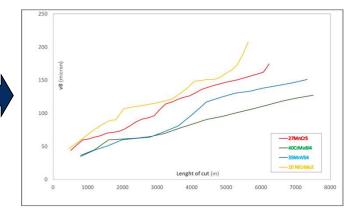
TopGear – GA No 101033989 5 April 8th, 2025

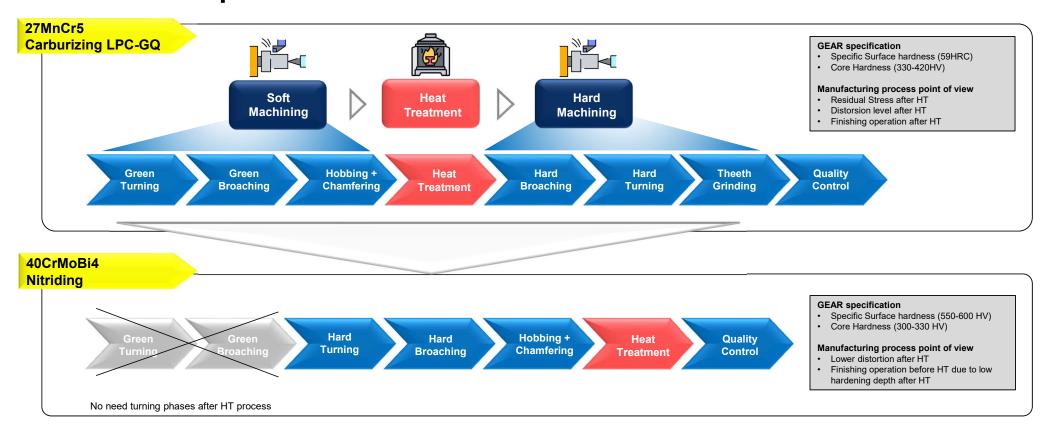



Machinability assessment

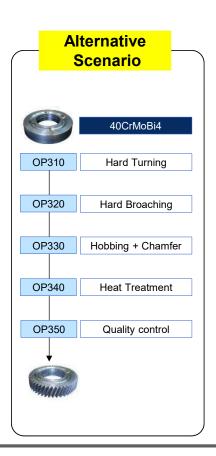

Rough and Finishing Machining


Flank wear at the initial (left) and final (right) turning step for 27MnCr5




Comparison between the insert flank wear progression vs heat treated steel grade

Process Comparison

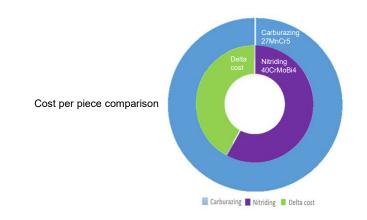


Overview of costs assessment

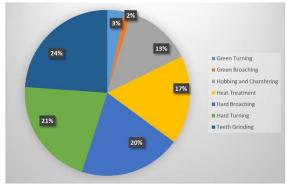
Operating costs

Overview of costs assessment

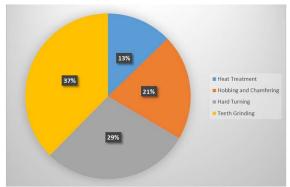
Operating costs


Carburazing

Nitriding

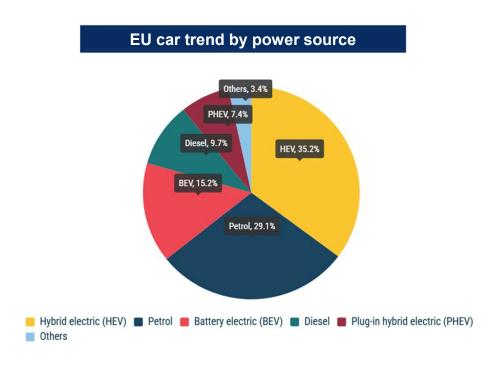

less expensive of ~ 42% than Caburazing process

- hypothesis of one year production for 500k gears
- equal working conditions in two processes compared


Cost distribution for producing one piece

Carburazing- 27MnCr5

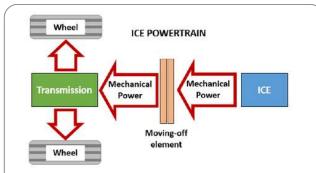
Cost distribution for producing one piece


40CrMoBi4 - Nitriding

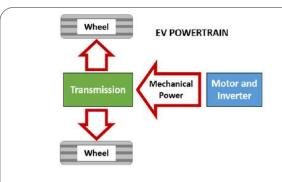


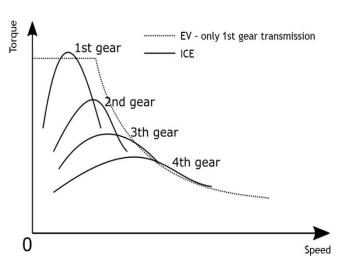
Application to BEV gearboxes

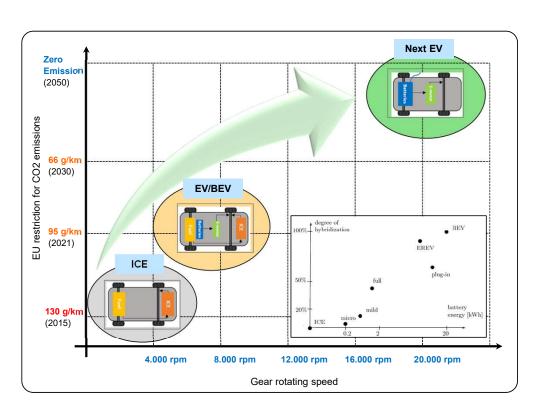
General overview

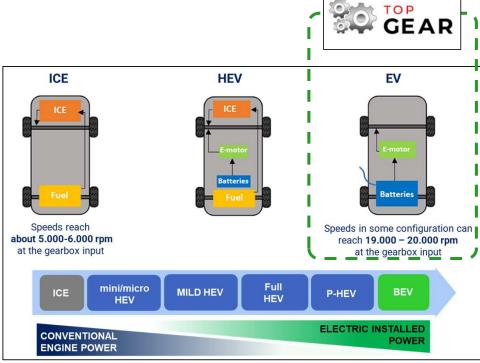


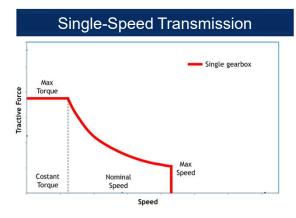
https://www.acea.auto https://www.iea.org/


Possibilities of application to BEV gearboxes


- Multispeed transmission
- Provide high number of gear ratios
- Adapting output torque engine
- Clutch/torque converter (system for startstop due to ICE characteristic)
- Reverse (backwards) with same engine rotating


- Produce the peak torque at zero rpm and its shaft can rotate in both directions
- No moving-off element required thanks to high torque capability at low motor speed

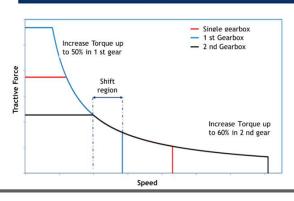

ICE Vs EV Gearbox (Torque-Speed relation)


Possibilities of application to BEV gearboxes

Conclusion

Application

Focus on simplicity and reliability
For Sandard electric vehicles


Advantages

Fixed gear ratio (eg between 8:1 and 12:1) It generates instant torque No complex gear system is required Little space occupied

Limitations

Fixed transmission ratio

Multi-Speed Transmission

Application

Focus is on performance for Sporty or Luxury vehicles

Advantages

Variable ratio (e.g. 15:1 in first gear, 8:1 in second) The stall torque can be increased The maximum vehicle speed can be increased

Limitations

Transmissions are too heavy and large It has a very high cost

TOPGEAR

Application:

- Suitable to satisfy city electric cars with single speed transmission
- Key factors applications: reliability, robustness of construction and low maintenance
- Solution coupled with high efficiency electric motors, capable of operating well at high RPM

Characteristics:

- · increase of fatigue and mechanical resistance
- · no scuffing damage occurs
- Reduce friction losses at high speeds
- Improve system reliability
- Support high-performance vehicles that require higher gear ratios

TopGear – GA No 101033989 13 April 8th, 2025

Thank you for your attention!

www.topgear-project.eu

